ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.12692
37
14
v1v2v3 (latest)

Equilibria and learning dynamics in mixed network coordination/anti-coordination games

26 September 2021
Laura Arditti
Giacomo Como
Fabio Fagnani
Martina Vanelli
ArXiv (abs)PDFHTML
Abstract

Whilst network coordination games and network anti-coordination games have received a considerable amount of attention in the literature, network games with coexisting coordinating and anti-coordinating players are known to exhibit more complex behaviors. In fact, depending on the network structure, such games may even fail to have pure-strategy Nash equilibria. An example is represented by the well-known matching pennies (discoordination) game. In this work, we first provide graph-theoretic conditions for the existence of pure-strategy Nash equilibria in mixed network coordination/anti-coordination games of arbitrary size. For the case where such conditions are met, we then study the asymptotic behavior of best-response dynamics and provide sufficient conditions for finite-time convergence to the set of Nash equilibria. Our results build on an extension and refinement of the notion of network cohesiveness and on the formulation of the new concept of network indecomposibility.

View on arXiv
Comments on this paper