ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.12507
23
1

Partial to Whole Knowledge Distillation: Progressive Distilling Decomposed Knowledge Boosts Student Better

26 September 2021
Xuanyang Zhang
X. Zhang
Jian-jun Sun
ArXivPDFHTML
Abstract

Knowledge distillation field delicately designs various types of knowledge to shrink the performance gap between compact student and large-scale teacher. These existing distillation approaches simply focus on the improvement of \textit{knowledge quality}, but ignore the significant influence of \textit{knowledge quantity} on the distillation procedure. Opposed to the conventional distillation approaches, which extract knowledge from a fixed teacher computation graph, this paper explores a non-negligible research direction from a novel perspective of \textit{knowledge quantity} to further improve the efficacy of knowledge distillation. We introduce a new concept of knowledge decomposition, and further put forward the \textbf{P}artial to \textbf{W}hole \textbf{K}nowledge \textbf{D}istillation~(\textbf{PWKD}) paradigm. Specifically, we reconstruct teacher into weight-sharing sub-networks with same depth but increasing channel width, and train sub-networks jointly to obtain decomposed knowledge~(sub-networks with more channels represent more knowledge). Then, student extract partial to whole knowledge from the pre-trained teacher within multiple training stages where cyclic learning rate is leveraged to accelerate convergence. Generally, \textbf{PWKD} can be regarded as a plugin to be compatible with existing offline knowledge distillation approaches. To verify the effectiveness of \textbf{PWKD}, we conduct experiments on two benchmark datasets:~CIFAR-100 and ImageNet, and comprehensive evaluation results reveal that \textbf{PWKD} consistently improve existing knowledge distillation approaches without bells and whistles.

View on arXiv
Comments on this paper