ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.12258
41
75

Pushing on Text Readability Assessment: A Transformer Meets Handcrafted Linguistic Features

25 September 2021
Bruce W. Lee
Yoonna Jang
J. Lee
    VLM
ArXivPDFHTML
Abstract

We report two essential improvements in readability assessment: 1. three novel features in advanced semantics and 2. the timely evidence that traditional ML models (e.g. Random Forest, using handcrafted features) can combine with transformers (e.g. RoBERTa) to augment model performance. First, we explore suitable transformers and traditional ML models. Then, we extract 255 handcrafted linguistic features using self-developed extraction software. Finally, we assemble those to create several hybrid models, achieving state-of-the-art (SOTA) accuracy on popular datasets in readability assessment. The use of handcrafted features help model performance on smaller datasets. Notably, our RoBERTA-RF-T1 hybrid achieves the near-perfect classification accuracy of 99%, a 20.3% increase from the previous SOTA.

View on arXiv
Comments on this paper