ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.12105
11
4

Faithful Target Attribute Prediction in Neural Machine Translation

24 September 2021
Xing Niu
Georgiana Dinu
Prashant Mathur
Anna Currey
ArXivPDFHTML
Abstract

The training data used in NMT is rarely controlled with respect to specific attributes, such as word casing or gender, which can cause errors in translations. We argue that predicting the target word and attributes simultaneously is an effective way to ensure that translations are more faithful to the training data distribution with respect to these attributes. Experimental results on two tasks, uppercased input translation and gender prediction, show that this strategy helps mirror the training data distribution in testing. It also facilitates data augmentation on the task of uppercased input translation.

View on arXiv
Comments on this paper