ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.12075
13
1

Towards A Measure Of General Machine Intelligence

24 September 2021
Gautham Venkatasubramanian
Sibesh Kar
Abhimanyu Singh
Shubham Mishra
Dushyant Yadav
Shreyansh Chandak
    ALM
    ELM
ArXivPDFHTML
Abstract

To build general-purpose artificial intelligence systems that can deal with unknown variables across unknown domains, we need benchmarks that measure how well these systems perform on tasks they have never seen before. A prerequisite for this is a measure of a task's generalization difficulty, or how dissimilar it is from the system's prior knowledge and experience. If the skill of an intelligence system in a particular domain is defined as it's ability to consistently generate a set of instructions (or programs) to solve tasks in that domain, current benchmarks do not quantitatively measure the efficiency of acquiring new skills, making it possible to brute-force skill acquisition by training with unlimited amounts of data and compute power. With this in mind, we first propose a common language of instruction, a programming language that allows the expression of programs in the form of directed acyclic graphs across a wide variety of real-world domains and computing platforms. Using programs generated in this language, we demonstrate a match-based method to both score performance and calculate the generalization difficulty of any given set of tasks. We use these to define a numeric benchmark called the generalization index, or the g-index, to measure and compare the skill-acquisition efficiency of any intelligence system on a set of real-world tasks. Finally, we evaluate the suitability of some well-known models as general intelligence systems by calculating their g-index scores.

View on arXiv
Comments on this paper