24
10

Scenario generation for market risk models using generative neural networks

Abstract

In this research, we show how to expand existing approaches of using generative adversarial networks (GANs) as economic scenario generators (ESG) to a whole internal market risk model - with enough risk factors to model the full band-width of investments for an insurance company and for a one year time horizon as required in Solvency 2. We demonstrate that the results of a GAN-based internal model are similar to regulatory approved internal models in Europe. Therefore, GAN-based models can be seen as a data-driven alternative way of market risk modeling.

View on arXiv
Comments on this paper