ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.09214
40
5

A Conformal Mapping-based Framework for Robot-to-Robot and Sim-to-Real Transfer Learning

19 September 2021
Shijie Gao
Nicola Bezzo
ArXivPDFHTML
Abstract

This paper presents a novel method for transferring motion planning and control policies between a teacher and a learner robot. With this work, we propose to reduce the sim-to-real gap, transfer knowledge designed for a specific system into a different robot, and compensate for system aging and failures. To solve this problem we introduce a Schwarz-Christoffel mapping-based method to geometrically stretch and fit the control inputs from the teacher into the learner command space. We also propose a method based on primitive motion generation to create motion plans and control inputs compatible with the learner's capabilities. Our approach is validated with simulations and experiments with different robotic systems navigating occluding environments.

View on arXiv
Comments on this paper