ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.08730
23
3

Unsupervised View-Invariant Human Posture Representation

17 September 2021
Faegheh Sardari
Bjorn Ommer
Majid Mirmehdi
    3DH
ArXivPDFHTML
Abstract

Most recent view-invariant action recognition and performance assessment approaches rely on a large amount of annotated 3D skeleton data to extract view-invariant features. However, acquiring 3D skeleton data can be cumbersome, if not impractical, in in-the-wild scenarios. To overcome this problem, we present a novel unsupervised approach that learns to extract view-invariant 3D human pose representation from a 2D image without using 3D joint data. Our model is trained by exploiting the intrinsic view-invariant properties of human pose between simultaneous frames from different viewpoints and their equivariant properties between augmented frames from the same viewpoint. We evaluate the learned view-invariant pose representations for two downstream tasks. We perform comparative experiments that show improvements on the state-of-the-art unsupervised cross-view action classification accuracy on NTU RGB+D by a significant margin, on both RGB and depth images. We also show the efficiency of transferring the learned representations from NTU RGB+D to obtain the first ever unsupervised cross-view and cross-subject rank correlation results on the multi-view human movement quality dataset, QMAR, and marginally improve on the-state-of-the-art supervised results for this dataset. We also carry out ablation studies to examine the contributions of the different components of our proposed network.

View on arXiv
Comments on this paper