ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.08357
27
61

Dynamic Spatiotemporal Graph Convolutional Neural Networks for Traffic Data Imputation with Complex Missing Patterns

17 September 2021
Yuebing Liang
Zhan Zhao
Lijun Sun
    GNN
    AI4TS
ArXivPDFHTML
Abstract

Missing data is an inevitable and ubiquitous problem for traffic data collection in intelligent transportation systems. Despite extensive research regarding traffic data imputation, there still exist two limitations to be addressed: first, existing approaches fail to capture the complex spatiotemporal dependencies in traffic data, especially the dynamic spatial dependencies evolving with time; second, prior studies mainly focus on randomly missing patterns while other more complex missing scenarios are less discussed. To fill these research gaps, we propose a novel deep learning framework called Dynamic Spatiotemporal Graph Convolutional Neural Networks (DSTGCN) to impute missing traffic data. The model combines the recurrent architecture with graph-based convolutions to model the spatiotemporal dependencies. Moreover, we introduce a graph structure estimation technique to model the dynamic spatial dependencies from real-time traffic information and road network structure. Extensive experiments based on two public traffic speed datasets are conducted to compare our proposed model with state-of-the-art deep learning approaches in four types of missing patterns. The results show that our proposed model outperforms existing deep learning models in all kinds of missing scenarios and the graph structure estimation technique contributes to the model performance. We further compare our proposed model with a tensor factorization model and find distinct behaviors across different model families under different training schemes and data availability.

View on arXiv
Comments on this paper