ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.07824
16
14

Design Space Exploration of SABER in 65nm ASIC

16 September 2021
Malik Imran
Felipe Almeida
J. Raik
Andrea Basso
S. Roy
S. Pagliarini
ArXivPDFHTML
Abstract

This paper presents a design space exploration for SABER, one of the finalists in NIST's quantum-resistant public-key cryptographic standardization effort. Our design space exploration targets a 65nm ASIC platform and has resulted in the evaluation of 6 different architectures. Our exploration is initiated by setting a baseline architecture which is ported from FPGA. In order to improve the clock frequency (the primary goal in our exploration), we have employed several optimizations: (i) use of compiled memories in a 'smart synthesis' fashion, (ii) pipelining, and (iii) logic sharing between SABER building blocks. The most optimized architecture utilizes four register files, achieves a remarkable clock frequency of 1GHz while only requiring an area of 0.314mm2. Moreover, physical synthesis is carried out for this architecture and a tapeout-ready layout is presented. The estimated dynamic power consumption of the high-frequency architecture is approximately 184mW for key generation and 187mW for encapsulation or decapsulation operations. These results strongly suggest that our optimized accelerator architecture is well suited for high-speed cryptographic applications.

View on arXiv
Comments on this paper