44
1

Computationally-Efficient Climate Predictions using Multi-Fidelity Surrogate Modelling

Abstract

Accurately modelling the Earth's climate has widespread applications ranging from forecasting local weather to understanding global climate change. Low-fidelity simulations of climate phenomena are readily available, but high-fidelity simulations are expensive to obtain. We therefore investigate the potential of Gaussian process-based multi-fidelity surrogate modelling as a way to produce high-fidelity climate predictions at low cost. Specifically, our model combines the predictions of a low-fidelity Global Climate Model (GCM) and those of a high-fidelity Regional Climate Model (RCM) to produce high-fidelity temperature predictions for a mountainous region on the coastline of Peru. We are able to produce high-fidelity temperature predictions at significantly lower computational cost compared to the high-fidelity model alone: our predictions have an average error of 15.62C215.62^\circ\text{C}^2 yet our approach only evaluates the high-fidelity model on 6% of the region of interest.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.