ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.07201
30
10

Expectable Motion Unit: Avoiding Hazards From Human Involuntary Motions in Human-Robot Interaction

15 September 2021
R. J. Kirschner
H. Mayer
Lisa Burr
Nico Mansfeld
Saeed Abdolshah
Sami Haddadin
ArXivPDFHTML
Abstract

In robotics, many control and planning schemes have been developed to ensure human physical safety in human-robot interaction. The human psychological state and the expectation towards the robot, however, are typically neglected. Even if the robot behaviour is regarded as biomechanically safe, humans may still react with a rapid involuntary motion (IM) caused by a startle or surprise. Such sudden, uncontrolled motions can jeopardize safety and should be prevented by any means. In this letter, we propose the Expectable Motion Unit (EMU), which ensures that a certain probability of IM occurrence is not exceeded in a typical HRI setting. Based on a model of IM occurrence generated through an experiment with 29 participants, we establish the mapping between robot velocity, robot-human distance, and the relative frequency of IM occurrence. This mapping is processed towards a real-time capable robot motion generator that limits the robot velocity during task execution if necessary. The EMU is combined in a holistic safety framework that integrates both the physical and psychological safety knowledge. A validation experiment showed that the EMU successfully avoids human IM in five out of six cases.

View on arXiv
Comments on this paper