ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.06265
14
3

Program-to-Circuit: Exploiting GNNs for Program Representation and Circuit Translation

13 September 2021
Nan Wu
Huake He
Yuan Xie
Pan Li
Cong Hao
    GNN
ArXivPDFHTML
Abstract

Circuit design is complicated and requires extensive domain-specific expertise. One major obstacle stuck on the way to hardware agile development is the considerably time-consuming process of accurate circuit quality evaluation. To significantly expedite the circuit evaluation during the translation from behavioral languages to circuit designs, we formulate it as a Program-to-Circuit problem, aiming to exploit the representation power of graph neural networks (GNNs) by representing C/C++ programs as graphs. The goal of this work is four-fold. First, we build a standard benchmark containing 40k C/C++ programs, each of which is translated to a circuit design with actual hardware quality metrics, aiming to facilitate the development of effective GNNs targeting this high-demand circuit design area. Second, 14 state-of-the-art GNN models are analyzed on the Program-to-Circuit problem. We identify key design challenges of this problem, which should be carefully handled but not yet solved by existing GNNs. The goal is to provide domain-specific knowledge for designing GNNs with suitable inductive biases. Third, we discuss three sets of real-world benchmarks for GNN generalization evaluation, and analyze the performance gap between standard programs and the real-case ones. The goal is to enable transfer learning from limited training data to real-world large-scale circuit design problems. Fourth, the Program-to-Circuit problem is a representative within the Program-to-X framework, a set of program-based analysis problems with various downstream tasks. The in-depth understanding of strength and weaknesses in applying GNNs on Program-to-Circuit could largely benefit the entire family of Program-to-X. Pioneering in this direction, we expect more GNN endeavors to revolutionize this high-demand Program-to-Circuit problem and to enrich the expressiveness of GNNs on programs.

View on arXiv
Comments on this paper