ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.04033
26
5

New Versions of Gradient Temporal Difference Learning

9 September 2021
Dong-hwan Lee
Han-Dong Lim
Jihoon Park
Okyong Choi
ArXivPDFHTML
Abstract

Sutton, Szepesv\'{a}ri and Maei introduced the first gradient temporal-difference (GTD) learning algorithms compatible with both linear function approximation and off-policy training. The goal of this paper is (a) to propose some variants of GTDs with extensive comparative analysis and (b) to establish new theoretical analysis frameworks for the GTDs. These variants are based on convex-concave saddle-point interpretations of GTDs, which effectively unify all the GTDs into a single framework, and provide simple stability analysis based on recent results on primal-dual gradient dynamics. Finally, numerical comparative analysis is given to evaluate these approaches.

View on arXiv
Comments on this paper