51
72

Discrete and Soft Prompting for Multilingual Models

Abstract

It has been shown for English that discrete and soft prompting perform strongly in few-shot learning with pretrained language models (PLMs). In this paper, we show that discrete and soft prompting perform better than finetuning in multilingual cases: Crosslingual transfer and in-language training of multilingual natural language inference. For example, with 48 English training examples, finetuning obtains 33.74% accuracy in crosslingual transfer, barely surpassing the majority baseline (33.33%). In contrast, discrete and soft prompting outperform finetuning, achieving 36.43% and 38.79%. We also demonstrate good performance of prompting with training data in multiple languages other than English.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.