ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.03188
14
9

Optimizing Quantum Variational Circuits with Deep Reinforcement Learning

7 September 2021
Owen Lockwood
ArXivPDFHTML
Abstract

Quantum Machine Learning (QML) is considered to be one of the most promising applications of near term quantum devices. However, the optimization of quantum machine learning models presents numerous challenges arising from the imperfections of hardware and the fundamental obstacles in navigating an exponentially scaling Hilbert space. In this work, we evaluate the potential of contemporary methods in deep reinforcement learning to augment gradient based optimization routines in quantum variational circuits. We find that reinforcement learning augmented optimizers consistently outperform gradient descent in noisy environments. All code and pretrained weights are available to replicate the results or deploy the models at: https://github.com/lockwo/rl_qvc_opt.

View on arXiv
Comments on this paper