ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.01748
17
15

Privacy of synthetic data: a statistical framework

3 September 2021
M. Boedihardjo
Thomas Strohmer
Roman Vershynin
ArXivPDFHTML
Abstract

Privacy-preserving data analysis is emerging as a challenging problem with far-reaching impact. In particular, synthetic data are a promising concept toward solving the aporetic conflict between data privacy and data sharing. Yet, it is known that accurately generating private, synthetic data of certain kinds is NP-hard. We develop a statistical framework for differentially private synthetic data, which enables us to circumvent the computational hardness of the problem. We consider the true data as a random sample drawn from a population Omega according to some unknown density. We then replace Omega by a much smaller random subset Omega^*, which we sample according to some known density. We generate synthetic data on the reduced space Omega^* by fitting the specified linear statistics obtained from the true data. To ensure privacy we use the common Laplacian mechanism. Employing the concept of Renyi condition number, which measures how well the sampling distribution is correlated with the population distribution, we derive explicit bounds on the privacy and accuracy provided by the proposed method.

View on arXiv
Comments on this paper