ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.00808
13
0

Moderate deviation principles for kernel estimator of invariant density in bifurcating Markov chains models

2 September 2021
S. Penda
ArXiv (abs)PDFHTML
Abstract

Bitseki and Delmas (2021) have studied recently the central limit theorem for kernel estimator of invariant density in bifurcating Markov chains models. We complete their work by proving a moderate deviation principle for this estimator. Unlike the work of Bitseki and Gorgui (2021), it is interesting to see that the distinction of the two regimes disappears and that we are able to get moderate deviation principle for large values of the ergodic rate. It is also interesting and surprising to see that for moderate deviation principle, the ergodic rate begins to have an impact on the choice of the bandwidth for values smaller than in the context of central limit theorem studied by Bitseki and Delmas (2021).

View on arXiv
Comments on this paper