ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.12172
33
22

Quantum Sub-Gaussian Mean Estimator

27 August 2021
Yassine Hamoudi
ArXivPDFHTML
Abstract

We present a new quantum algorithm for estimating the mean of a real-valued random variable obtained as the output of a quantum computation. Our estimator achieves a nearly-optimal quadratic speedup over the number of classical i.i.d. samples needed to estimate the mean of a heavy-tailed distribution with a sub-Gaussian error rate. This result subsumes (up to logarithmic factors) earlier works on the mean estimation problem that were not optimal for heavy-tailed distributions [BHMT02,BDGT11], or that require prior information on the variance [Hein02,Mon15,HM19]. As an application, we obtain new quantum algorithms for the (ϵ,δ)(\epsilon,\delta)(ϵ,δ)-approximation problem with an optimal dependence on the coefficient of variation of the input random variable.

View on arXiv
Comments on this paper