ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.11601
26
183

Retrieval Augmented Code Generation and Summarization

26 August 2021
Md. Rizwan Parvez
W. Ahmad
Saikat Chakraborty
Baishakhi Ray
Kai-Wei Chang
ArXivPDFHTML
Abstract

Software developers write a lot of source code and documentation during software development. Intrinsically, developers often recall parts of source code or code summaries that they had written in the past while implementing software or documenting them. To mimic developers' code or summary generation behavior, we propose a retrieval augmented framework, REDCODER, that retrieves relevant code or summaries from a retrieval database and provides them as a supplement to code generation or summarization models. REDCODER has a couple of uniqueness. First, it extends the state-of-the-art dense retrieval technique to search for relevant code or summaries. Second, it can work with retrieval databases that include unimodal (only code or natural language description) or bimodal instances (code-description pairs). We conduct experiments and extensive analysis on two benchmark datasets of code generation and summarization in Java and Python, and the promising results endorse the effectiveness of our proposed retrieval augmented framework.

View on arXiv
Comments on this paper