ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.10851
29
9
v1v2 (latest)

Autoencoder-based Semantic Novelty Detection: Towards Dependable AI-based Systems

24 August 2021
Andreas Rausch
Azarmidokht Motamedi Sedeh
Meng Zhang
ArXiv (abs)PDFHTML
Abstract

Many autonomous systems, such as driverless taxis, perform safety critical functions. Autonomous systems employ artificial intelligence (AI) techniques, specifically for the environment perception. Engineers cannot completely test or formally verify AI-based autonomous systems. The accuracy of AI-based systems depends on the quality of training data. Thus, novelty detection - identifying data that differ in some respect from the data used for training - becomes a safety measure for system development and operation. In this paper, we propose a new architecture for autoencoder-based semantic novelty detection with two innovations: architectural guidelines for a semantic autoencoder topology and a semantic error calculation as novelty criteria. We demonstrate that such a semantic novelty detection outperforms autoencoder-based novelty detection approaches known from literature by minimizing false negatives.

View on arXiv
Comments on this paper