ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.10449
22
1

Differential Music: Automated Music Generation Using LSTM Networks with Representation Based on Melodic and Harmonic Intervals

23 August 2021
Hooman Rafraf
    MGen
ArXivPDFHTML
Abstract

This paper presents a generative AI model for automated music composition with LSTM networks that takes a novel approach at encoding musical information which is based on movement in music rather than absolute pitch. Melodies are encoded as a series of intervals rather than a series of pitches, and chords are encoded as the set of intervals that each chord note makes with the melody at each timestep. Experimental results show promise as they sound musical and tonal. There are also weaknesses to this method, mainly excessive modulations in the compositions, but that is expected from the nature of the encoding. This issue is discussed later in the paper and is a potential topic for future work.

View on arXiv
Comments on this paper