ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.10069
8
13

An Interpretable Approach to Hateful Meme Detection

9 August 2021
Tanvi Deshpande
Nitya Mani
    VLM
ArXivPDFHTML
Abstract

Hateful memes are an emerging method of spreading hate on the internet, relying on both images and text to convey a hateful message. We take an interpretable approach to hateful meme detection, using machine learning and simple heuristics to identify the features most important to classifying a meme as hateful. In the process, we build a gradient-boosted decision tree and an LSTM-based model that achieve comparable performance (73.8 validation and 72.7 test auROC) to the gold standard of humans and state-of-the-art transformer models on this challenging task.

View on arXiv
Comments on this paper