ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.10058
9
8

Symmetries in Directed Gaussian Graphical Models

23 August 2021
V. Makam
Philipp Reichenbach
A. Seigal
ArXivPDFHTML
Abstract

We define Gaussian graphical models on directed acyclic graphs with coloured vertices and edges, calling them RDAG (restricted directed acyclic graph) models. If two vertices or edges have the same colour, their parameters in the model must be the same. We present an algorithm to find the maximum likelihood estimate (MLE) in an RDAG model, and characterise when the MLE exists, via linear independence conditions. We relate properties of a graph, and its colouring, to the number of samples needed for the MLE to exist and to be unique. We also characterise when an RDAG model is equal to an associated undirected graphical model and study connections to groups and invariant theory. We provide examples and simulations to study the benefits of RDAGs over uncoloured DAGs.

View on arXiv
Comments on this paper