ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.10052
11
18

Integrating LSTMs and GNNs for COVID-19 Forecasting

14 July 2021
Nathan Sesti
J. Luis
E. Crawley
B. Cameron
    AI4TS
ArXivPDFHTML
Abstract

The spread of COVID-19 has coincided with the rise of Graph Neural Networks (GNNs), leading to several studies proposing their use to better forecast the evolution of the pandemic. Many such models also include Long Short Term Memory (LSTM) networks, a common tool for time series forecasting. In this work, we further investigate the integration of these two methods by implementing GNNs within the gates of an LSTM and exploiting spatial information. In addition, we introduce a skip connection which proves critical to jointly capture the spatial and temporal patterns in the data. We validate our daily COVID-19 new cases forecast model on data of 37 European nations for the last 472 days and show superior performance compared to state-of-the-art graph time series models based on mean absolute scaled error (MASE). This area of research has important applications to policy-making and we analyze its potential for pandemic resource control.

View on arXiv
Comments on this paper