ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.09858
13
2

Data Augmentation Using Many-To-Many RNNs for Session-Aware Recommender Systems

22 August 2021
Martín Baigorria Alonso
ArXivPDFHTML
Abstract

The ACM WSDM WebTour 2021 Challenge organized by Booking.com focuses on applying Session-Aware recommender systems in the travel domain. Given a sequence of travel bookings in a user trip, we look to recommend the user's next destination. To handle the large dimensionality of the output's space, we propose a many-to-many RNN model, predicting the next destination chosen by the user at every sequence step as opposed to only the final one. We show how this is a computationally efficient alternative to doing data augmentation in a many-to-one RNN, where we consider every subsequence of a session starting from the first element. Our solution achieved 4th place in the final leaderboard, with an accuracy@4 of 0.5566.

View on arXiv
Comments on this paper