Centralised Connectivity-Preserving Transformations for Programmable Matter: A Minimal Seed Approach

We study a model of programmable matter systems consisting of devices lying on a 2-dimensional square grid which are able to perform the minimal mechanical operation of rotating around each other. The goal is to transform an initial shape A into a target shape B. We investigate the class of shapes which can be constructed in such a scenario under the additional constraint of maintaining global connectivity at all times. We focus on the scenario of transforming nice shapes, a class of shapes consisting of a central line where for all nodes in either or is connected to by a line of nodes perpendicular to . We prove that by introducing a minimal 3-node seed it is possible for the canonical shape of a line of nodes to be transformed into a nice shape of nodes. We use this to show that a 4-node seed enables the transformation of nice shapes of size into any other nice shape of size in time. We leave as an open problem the expansion of the class of shapes which can be constructed using such a seed to include those derived from nice shapes.
View on arXiv