ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.09195
11
3

Towards Photorealistic Colorization by Imagination

20 August 2021
Chenyang Lei
Yue Wu
Qifeng Chen
    DiffM
ArXivPDFHTML
Abstract

We present a novel approach to automatic image colorization by imitating the imagination process of human experts. Our imagination module is designed to generate color images that are context-correlated with black-and-white photos. Given a black-and-white image, our imagination module firstly extracts the context information, which is then used to synthesize colorful and diverse images using a conditional image synthesis network (e.g., semantic image synthesis model). We then design a colorization module to colorize the black-and-white images with the guidance of imagination for photorealistic colorization. Experimental results show that our work produces more colorful and diverse results than state-of-the-art image colorization methods. Our source codes will be publicly available.

View on arXiv
Comments on this paper