ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.09119
22
88

Semantic Communication with Adaptive Universal Transformer

20 August 2021
Qingyang Zhou
Rongpeng Li
Zhifeng Zhao
Chenghui Peng
Honggang Zhang
ArXivPDFHTML
Abstract

With the development of deep learning (DL), natural language processing (NLP) makes it possible for us to analyze and understand a large amount of language texts. Accordingly, we can achieve a semantic communication in terms of joint semantic source and channel coding over a noisy channel with the help of NLP. However, the existing method to realize this goal is to use a fixed transformer of NLP while ignoring the difference of semantic information contained in each sentence. To solve this problem, we propose a new semantic communication system based on Universal Transformer. Compared with the traditional transformer, an adaptive circulation mechanism is introduced in the Universal Transformer. Through the introduction of the circulation mechanism, the new semantic communication system can be more flexible to transmit sentences with different semantic information, and achieve better end-to-end performance under various channel conditions.

View on arXiv
Comments on this paper