ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.07908
22
0

M-ar-K-Fast Independent Component Analysis

17 August 2021
Luca Parisi
ArXivPDFHTML
Abstract

This study presents the m-arcsinh Kernel ('m-ar-K') Fast Independent Component Analysis ('FastICA') method ('m-ar-K-FastICA') for feature extraction. The kernel trick has enabled dimensionality reduction techniques to capture a higher extent of non-linearity in the data; however, reproducible, open-source kernels to aid with feature extraction are still limited and may not be reliable when projecting features from entropic data. The m-ar-K function, freely available in Python and compatible with its open-source library 'scikit-learn', is hereby coupled with FastICA to achieve more reliable feature extraction in presence of a high extent of randomness in the data, reducing the need for pre-whitening. Different classification tasks were considered, as related to five (N = 5) open access datasets of various degrees of information entropy, available from scikit-learn and the University California Irvine (UCI) Machine Learning repository. Experimental results demonstrate improvements in the classification performance brought by the proposed feature extraction. The novel m-ar-K-FastICA dimensionality reduction approach is compared to the 'FastICA' gold standard method, supporting its higher reliability and computational efficiency, regardless of the underlying uncertainty in the data.

View on arXiv
Comments on this paper