ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.07493
13
15

A Light-weight contextual spelling correction model for customizing transducer-based speech recognition systems

17 August 2021
Xiaoqiang Wang
Yanqing Liu
Sheng Zhao
Jinyu Li
    KELM
ArXivPDFHTML
Abstract

It's challenging to customize transducer-based automatic speech recognition (ASR) system with context information which is dynamic and unavailable during model training. In this work, we introduce a light-weight contextual spelling correction model to correct context-related recognition errors in transducer-based ASR systems. We incorporate the context information into the spelling correction model with a shared context encoder and use a filtering algorithm to handle large-size context lists. Experiments show that the model improves baseline ASR model performance with about 50% relative word error rate reduction, which also significantly outperforms the baseline method such as contextual LM biasing. The model also shows excellent performance for out-of-vocabulary terms not seen during training.

View on arXiv
Comments on this paper