ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.07259
18
35

APReL: A Library for Active Preference-based Reward Learning Algorithms

16 August 2021
Erdem Biyik
Aditi Talati
Dorsa Sadigh
ArXivPDFHTML
Abstract

Reward learning is a fundamental problem in human-robot interaction to have robots that operate in alignment with what their human user wants. Many preference-based learning algorithms and active querying techniques have been proposed as a solution to this problem. In this paper, we present APReL, a library for active preference-based reward learning algorithms, which enable researchers and practitioners to experiment with the existing techniques and easily develop their own algorithms for various modules of the problem. APReL is available at https://github.com/Stanford-ILIAD/APReL.

View on arXiv
Comments on this paper