ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.07140
32
22

MTG: A Benchmark Suite for Multilingual Text Generation

13 August 2021
Yiran Chen
Zhenqiao Song
Xianze Wu
Danqing Wang
Jingjing Xu
Jiaze Chen
Hao Zhou
Lei Li
    LRM
    VLM
ArXivPDFHTML
Abstract

We introduce MTG, a new benchmark suite for training and evaluating multilingual text generation. It is the first-proposed multilingual multiway text generation dataset with the largest human-annotated data (400k). It includes four generation tasks (story generation, question generation, title generation and text summarization) across five languages (English, German, French, Spanish and Chinese). The multiway setup enables testing knowledge transfer capabilities for a model across languages and tasks. Using MTG, we train and analyze several popular multilingual generation models from different aspects. Our benchmark suite fosters model performance enhancement with more human-annotated parallel data. It provides comprehensive evaluations with diverse generation scenarios. Code and data are available at \url{https://github.com/zide05/MTG}.

View on arXiv
Comments on this paper