ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.04328
15
5

Generative Adversarial Neural Cellular Automata

19 July 2021
Maximilian Otte
Quentin Delfosse
Johannes Czech
Kristian Kersting
    GAN
ArXivPDFHTML
Abstract

Motivated by the interaction between cells, the recently introduced concept of Neural Cellular Automata shows promising results in a variety of tasks. So far, this concept was mostly used to generate images for a single scenario. As each scenario requires a new model, this type of generation seems contradictory to the adaptability of cells in nature. To address this contradiction, we introduce a concept using different initial environments as input while using a single Neural Cellular Automata to produce several outputs. Additionally, we introduce GANCA, a novel algorithm that combines Neural Cellular Automata with Generative Adversarial Networks, allowing for more generalization through adversarial training. The experiments show that a single model is capable of learning several images when presented with different inputs, and that the adversarially trained model improves drastically on out-of-distribution data compared to a supervised trained model.

View on arXiv
Comments on this paper