ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.04102
24
17

Deterministic Massively Parallel Connectivity

9 August 2021
Samantha R. Coy
A. Czumaj
ArXivPDFHTML
Abstract

We consider the problem of designing fundamental graph algorithms on the model of Massive Parallel Computation (MPC). The input to the problem is an undirected graph GGG with nnn vertices and mmm edges, and with DDD being the maximum diameter of any connected component in GGG. We consider the MPC with low local space, allowing each machine to store only Θ(nδ)\Theta(n^\delta)Θ(nδ) words for an arbitrarily constant δ>0\delta > 0δ>0, and with linear global space (which is equal to the number of machines times the local space available), that is, with optimal utilization. In a recent breakthrough, Andoni et al. (FOCS 18) and Behnezhad et al. (FOCS 19) designed parallel randomized algorithms that in O(log⁡D+log⁡log⁡n)O(\log D + \log \log n)O(logD+loglogn) rounds on an MPC with low local space determine all connected components of an input graph, improving upon the classic bound of O(log⁡n)O(\log n)O(logn) derived from earlier works on PRAM algorithms. In this paper, we show that asymptotically identical bounds can be also achieved for deterministic algorithms: we present a deterministic MPC low local space algorithm that in O(log⁡D+log⁡log⁡n)O(\log D + \log \log n)O(logD+loglogn) rounds determines all connected components of the input graph.

View on arXiv
Comments on this paper