ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.03662
73
31
v1v2 (latest)

Discriminative Latent Semantic Graph for Video Captioning

8 August 2021
Yang Bai
Junyan Wang
Yang Long
Bingzhang Hu
Yang Song
Maurice Pagnucco
ArXiv (abs)PDFHTMLGithub (27★)
Abstract

Video captioning aims to automatically generate natural language sentences that can describe the visual contents of a given video. Existing generative models like encoder-decoder frameworks cannot explicitly explore the object-level interactions and frame-level information from complex spatio-temporal data to generate semantic-rich captions. Our main contribution is to identify three key problems in a joint framework for future video summarization tasks. 1) Enhanced Object Proposal: we propose a novel Conditional Graph that can fuse spatio-temporal information into latent object proposal. 2) Visual Knowledge: Latent Proposal Aggregation is proposed to dynamically extract visual words with higher semantic levels. 3) Sentence Validation: A novel Discriminative Language Validator is proposed to verify generated captions so that key semantic concepts can be effectively preserved. Our experiments on two public datasets (MVSD and MSR-VTT) manifest significant improvements over state-of-the-art approaches on all metrics, especially for BLEU-4 and CIDEr. Our code is available at https://github.com/baiyang4/D-LSG-Video-Caption.

View on arXiv
Comments on this paper