39
3

Recurrent Graph Neural Networks for Rumor Detection in Online Forums

Abstract

The widespread adoption of online social networks in daily life has created a pressing need for effectively classifying user-generated content. This work presents techniques for classifying linked content spread on forum websites -- specifically, links to news articles or blogs -- using user interaction signals alone. Importantly, online forums such as Reddit do not have a user-generated social graph, which is assumed in social network behavioral-based classification settings. Using Reddit as a case-study, we show how to obtain a derived social graph, and use this graph, Reddit post sequences, and comment trees as inputs to a Recurrent Graph Neural Network (R-GNN) encoder. We train the R-GNN on news link categorization and rumor detection, showing superior results to recent baselines. Our code is made publicly available at https://github.com/google-research/social_cascades.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.