ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.03362
27
80

On Measures of Biases and Harms in NLP

7 August 2021
Sunipa Dev
Emily Sheng
Jieyu Zhao
Aubrie Amstutz
Jiao Sun
Yu Hou
M. Sanseverino
Jiin Kim
Akihiro Nishi
Nanyun Peng
Kai-Wei Chang
ArXivPDFHTML
Abstract

Recent studies show that Natural Language Processing (NLP) technologies propagate societal biases about demographic groups associated with attributes such as gender, race, and nationality. To create interventions and mitigate these biases and associated harms, it is vital to be able to detect and measure such biases. While existing works propose bias evaluation and mitigation methods for various tasks, there remains a need to cohesively understand the biases and the specific harms they measure, and how different measures compare with each other. To address this gap, this work presents a practical framework of harms and a series of questions that practitioners can answer to guide the development of bias measures. As a validation of our framework and documentation questions, we also present several case studies of how existing bias measures in NLP -- both intrinsic measures of bias in representations and extrinsic measures of bias of downstream applications -- can be aligned with different harms and how our proposed documentation questions facilitates more holistic understanding of what bias measures are measuring.

View on arXiv
Comments on this paper