ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.01965
6
1

Graph Attention Network For Microwave Imaging of Brain Anomaly

4 August 2021
Ahmed Al-Saffar
L. Guo
A. Abbosh
ArXivPDFHTML
Abstract

So far, numerous learned models have been pressed to use in microwave imaging problems. These models however, are oblivious to the imaging geometry. It has always been hard to bake the physical setup of the imaging array into the structure of the network, resulting in a data-intensive models that are not practical. This work put forward a graph formulation of the microwave imaging array. The architectures proposed is made cognizant of the physical setup, allowing it to incorporate the symmetries, resulting in a less data requirements. Graph convolution and attention mechanism is deployed to handle the cases of fully-connected graphs corresponding to multi-static arrays. The graph-treatment of the problem is evaluated on experimental setup in context of brain anomaly localization with microwave imaging.

View on arXiv
Comments on this paper