ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.01810
11
0

Deep Learning Chromatic and Clique Numbers of Graphs

4 August 2021
J. V. Hulse
J. S. Friedman
    GNN
ArXivPDFHTML
Abstract

Deep neural networks have been applied to a wide range of problems across different application domains with great success. Recently, research into combinatorial optimization problems in particular has generated much interest in the machine learning community. In this work, we develop deep learning models to predict the chromatic number and maximum clique size of graphs, both of which represent classical NP-complete combinatorial optimization problems encountered in graph theory. The neural networks are trained using the most basic representation of the graph, the adjacency matrix, as opposed to undergoing complex domain-specific feature engineering. The experimental results show that deep neural networks, and in particular convolutional neural networks, obtain strong performance on this problem.

View on arXiv
Comments on this paper