18
0

Incorporation of Deep Neural Network & Reinforcement Learning with Domain Knowledge

Abstract

We present a study of the manners by which Domain information has been incorporated when building models with Neural Networks. Integrating space data is uniquely important to the development of Knowledge understanding model, as well as other fields that aid in understanding information by utilizing the human-machine interface and Reinforcement Learning. On numerous such occasions, machine-based model development may profit essentially from the human information on the world encoded in an adequately exact structure. This paper inspects expansive ways to affect encode such information as sensible and mathematical limitations and portrays methods and results that came to a couple of subcategories under all of those methodologies.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.