ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.13783
9
16

Efficiently resolving rotational ambiguity in Bayesian matrix sampling with matching

29 July 2021
Evan Poworoznek
F. Ferrari
David B. Dunson
ArXivPDFHTML
Abstract

A wide class of Bayesian models involve unidentifiable random matrices that display rotational ambiguity, with the Gaussian factor model being a typical example. A rich variety of Markov chain Monte Carlo (MCMC) algorithms have been proposed for sampling the parameters of these models. However, without identifiability constraints, reliable posterior summaries of the parameters cannot be obtained directly from the MCMC output. As an alternative, we propose a computationally efficient post-processing algorithm that allows inference on non-identifiable parameters. We first orthogonalize the posterior samples using Varimax and then tackle label and sign switching with a greedy matching algorithm. We compare the performance and computational complexity with other methods using a simulation study and chemical exposures data. The algorithm implementation is available in the infinitefactor R package on CRAN.

View on arXiv
Comments on this paper