ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.13077
11
10

Neural Rule-Execution Tracking Machine For Transformer-Based Text Generation

27 July 2021
Yufei Wang
Can Xu
Huang Hu
Chongyang Tao
Stephen Wan
Mark Dras
Mark Johnson
Daxin Jiang
ArXivPDFHTML
Abstract

Sequence-to-Sequence (S2S) neural text generation models, especially the pre-trained ones (e.g., BART and T5), have exhibited compelling performance on various natural language generation tasks. However, the black-box nature of these models limits their application in tasks where specific rules (e.g., controllable constraints, prior knowledge) need to be executed. Previous works either design specific model structure (e.g., Copy Mechanism corresponding to the rule "the generated output should include certain words in the source input") or implement specialized inference algorithm (e.g., Constrained Beam Search) to execute particular rules through the text generation. These methods require careful design case-by-case and are difficult to support multiple rules concurrently. In this paper, we propose a novel module named Neural Rule-Execution Tracking Machine that can be equipped into various transformer-based generators to leverage multiple rules simultaneously to guide the neural generation model for superior generation performance in a unified and scalable way. Extensive experimental results on several benchmarks verify the effectiveness of our proposed model in both controllable and general text generation.

View on arXiv
Comments on this paper