ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.12220
19
0

Thought Flow Nets: From Single Predictions to Trains of Model Thought

26 July 2021
Hendrik Schuff
Heike Adel
Ngoc Thang Vu
    AIFin
    LRM
ArXivPDFHTML
Abstract

When humans solve complex problems, they typically create a sequence of ideas (involving an intuitive decision, reflection, error correction, etc.) in order to reach a conclusive decision. Contrary to this, today's models are mostly trained to map an input to one single and fixed output. In this paper, we investigate how we can give models the opportunity of a second, third and kkk-th thought. Taking inspiration from Hegel's dialectics, we propose the concept of a thought flow which creates a sequence of predictions. We present a self-correction mechanism that is trained to estimate the model's correctness and performs iterative prediction updates based on the correctness prediction's gradient. We introduce our method at the example of question answering and conduct extensive experiments that demonstrate (i) our method's ability to correct its own predictions and (ii) its potential to notably improve model performances. In addition, we conduct a qualitative analysis of thought flow correction patterns and explore how thought flow predictions affect human users within a crowdsourcing study. We find that (iii) thought flows enable improved user performance and are perceived as more natural, correct, and intelligent as single and/or top-3 predictions.

View on arXiv
Comments on this paper