ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.11517
11
2

Crosslink-Net: Double-branch Encoder Segmentation Network via Fusing Vertical and Horizontal Convolutions

24 July 2021
Qian Yu
Lei Qi
Luping Zhou
Lei Wang
Yilong Yin
Yinghuan Shi
Wuzhang Wang
Yang Gao
ArXivPDFHTML
Abstract

Accurate image segmentation plays a crucial role in medical image analysis, yet it faces great challenges of various shapes, diverse sizes, and blurry boundaries. To address these difficulties, square kernel-based encoder-decoder architecture has been proposed and widely used, but its performance remains still unsatisfactory. To further cope with these challenges, we present a novel double-branch encoder architecture. Our architecture is inspired by two observations: 1) Since the discrimination of features learned via square convolutional kernels needs to be further improved, we propose to utilize non-square vertical and horizontal convolutional kernels in the double-branch encoder, so features learned by the two branches can be expected to complement each other. 2) Considering that spatial attention can help models to better focus on the target region in a large-sized image, we develop an attention loss to further emphasize the segmentation on small-sized targets. Together, the above two schemes give rise to a novel double-branch encoder segmentation framework for medical image segmentation, namely Crosslink-Net. The experiments validate the effectiveness of our model on four datasets. The code is released at https://github.com/Qianyu1226/Crosslink-Net.

View on arXiv
Comments on this paper