ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.07750
20
3

Intrinsic Dimension Adaptive Partitioning for Kernel Methods

16 July 2021
Thomas Hamm
Ingo Steinwart
ArXiv (abs)PDFHTML
Abstract

We prove minimax optimal learning rates for kernel ridge regression, resp.~support vector machines based on a data dependent partition of the input space, where the dependence of the dimension of the input space is replaced by the fractal dimension of the support of the data generating distribution. We further show that these optimal rates can be achieved by a training validation procedure without any prior knowledge on this intrinsic dimension of the data. Finally, we conduct extensive experiments which demonstrate that our considered learning methods are actually able to generalize from a dataset that is non-trivially embedded in a much higher dimensional space just as well as from the original dataset.

View on arXiv
Comments on this paper