ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.07442
14
1

MXDAG: A Hybrid Abstraction for Cluster Applications

15 July 2021
Weitao Wang
Sushovan Das
X. Wu
Zhuang Wang
Ang Chen
T. Ng
ArXivPDFHTML
Abstract

Distributed applications, such as database queries and distributed training, consist of both compute and network tasks. DAG-based abstraction primarily targets compute tasks and has no explicit network-level scheduling. In contrast, Coflow abstraction collectively schedules network flows among compute tasks but lacks the end-to-end view of the application DAG. Because of the dependencies and interactions between these two types of tasks, it is sub-optimal to only consider one of them. We argue that co-scheduling of both compute and network tasks can help applications towards the globally optimal end-to-end performance. However, none of the existing abstractions can provide fine-grained information for co-scheduling. We propose MXDAG, an abstraction to treat both compute and network tasks explicitly. It can capture the dependencies and interactions of both compute and network tasks leading to improved application performance.

View on arXiv
Comments on this paper