ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.07350
18
2

The Completion of Covariance Kernels

15 July 2021
Kartik G. Waghmare
V. Panaretos
ArXivPDFHTML
Abstract

We consider the problem of positive-semidefinite continuation: extending a partially specified covariance kernel from a subdomain Ω\OmegaΩ of a rectangular domain I×II\times II×I to a covariance kernel on the entire domain I×II\times II×I. For a broad class of domains Ω\OmegaΩ called \emph{serrated domains}, we are able to present a complete theory. Namely, we demonstrate that a canonical completion always exists and can be explicitly constructed. We characterise all possible completions as suitable perturbations of the canonical completion, and determine necessary and sufficient conditions for a unique completion to exist. We interpret the canonical completion via the graphical model structure it induces on the associated Gaussian process. Furthermore, we show how the estimation of the canonical completion reduces to the solution of a system of linear statistical inverse problems in the space of Hilbert-Schmidt operators, and derive rates of convergence. We conclude by providing extensions of our theory to more general forms of domains, and by demonstrating how our results can be used to construct covariance estimators from sample path fragments of the associated stochastic process. Our results are illustrated numerically by way of a simulation study and a real example.

View on arXiv
Comments on this paper