71
71

Do Humans Trust Advice More if it Comes from AI? An Analysis of Human-AI Interactions

Abstract

In decision support applications of AI, the AI algorithm's output is framed as a suggestion to a human user. The user may ignore this advice or take it into consideration to modify their decision. With the increasing prevalence of such human-AI interactions, it is important to understand how users react to AI advice. In this paper, we recruited over 1100 crowdworkers to characterize how humans use AI suggestions relative to equivalent suggestions from a group of peer humans across several experimental settings. We find that participants' beliefs about how human versus AI performance on a given task affects whether they heed the advice. When participants do heed the advice, they use it similarly for human and AI suggestions. Based on these results, we propose a two-stage, "activation-integration" model for human behavior and use it to characterize the factors that affect human-AI interactions.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.