ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.06991
24
17

Physics-informed generative neural network: an application to troposphere temperature prediction

8 July 2021
Zhihao Chen
Jie Gao
Weikai Wang
Zheng Yan
    AI4CE
ArXivPDFHTML
Abstract

The troposphere is one of the atmospheric layers where most weather phenomena occur. Temperature variations in the troposphere, especially at 500 hPa, a typical level of the middle troposphere, are significant indicators of future weather changes. Numerical weather prediction is effective for temperature prediction, but its computational complexity hinders a timely response. This paper proposes a novel temperature prediction approach in framework ofphysics-informed deep learning. The new model, called PGnet, builds upon a generative neural network with a mask matrix. The mask is designed to distinguish the low-quality predicted regions generated by the first physical stage. The generative neural network takes the mask as prior for the second-stage refined predictions. A mask-loss and a jump pattern strategy are developed to train the generative neural network without accumulating errors during making time-series predictions. Experiments on ERA5 demonstrate that PGnet can generate more refined temperature predictions than the state-of-the-art.

View on arXiv
Comments on this paper